skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hofman, Theo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper presents models and optimization methods for the design of electric vehicle propulsion systems. Specifically, we first derive a bi-convex model of a battery electric powertrain including the transmission and explicitly accounting for the impact of its components' size on the energy consumption of the vehicle. Second, we formulate the energy-optimal sizing and control problem for a given driving cycle and solve it as a sequence of second-order conic programs. Finally, we present a real-world case study for heavy-duty electric trucks, comparing a single-gear transmission with a continuously variable transmission (CVT), and validate our approach with respect to state-of-the-art particle swarm optimization algorithms. Our results show that, depending on the electric motor technology, CVTs can reduce the energy consumption and the battery size of electric trucks between up to 10%, and shrink the electric motor up to 50%. 
    more » « less
  2. null (Ed.)
    This paper presents models and optimization methods for the design of electric vehicle propulsion systems. Specifically, we first derive a bi-convex model of a battery electric powertrain including the transmission and explicitly accounting for the impact of its components’ size on the energy consumption of the vehicle. Second, we formulate the energy-optimal sizing and control problem for a given driving cycle and solve it as a sequence of second-order conic programs. Finally, we present a real-world case study for heavy-duty electric trucks, comparing a single-gear transmission with a continuously variable transmission (CVT), and validate our approach with respect to state-of-the-art particle swarm optimization algorithms. Our results show that, depending on the electric motor technology, CVTs can reduce the energy consumption and the battery size of electric trucks between up to 10%, and shrink the electric motor up to 50%. 
    more » « less